Iterative choice of the optimal regularization parameter in TV image deconvolution
نویسندگان
چکیده
We present an iterative method for choosing the optimal regularization parameter for the linear inverse problem of Total Variation image deconvolution. This approach is based on the Morozov discrepancy principle and on an exponential model function for the data term. The Total Variation image deconvolution is performed with the Alternating Direction Method of Multipliers (ADMM). With a smoothed l2 norm, the differentiability of the value of the Lagrangian at the saddle point can be shown and an approximate model function obtained. The choice of the optimal parameter can be refined with a Newton method. The efficiency of the method is demonstrated on a blurred and noisy bone CT cross section.
منابع مشابه
PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملAdvances in Total Variation Image Restoration: Blur Estimation, Parameter Estimation and Efficient Optimization
This thesis addresses total variation (TV) image restoration and blind image deconvolution. Classical image processing problems, such as deblurring, call for some kind of regularization. Total variation is among the state-of-the-art regularizers, as it provides a good balance between the ability to describe piecewise smooth images and the complexity of the resulting algorithms. In this thesis, ...
متن کاملAdaptive Total Variation Image Deconvolution: Application to Magnetic Resonance Imaging
This paper presents a new approach to image deconvolution (deblurring), under total variation (TV) regularization, which is adaptive in the sense that it doesn’t require the user to specify the value of the regularization parameter. We follow the Bayesian approach of integrating out this parameter, which is achieved by using an approximation of the partition function of the Bayesian interpretat...
متن کاملTotal Variation Deconvolution using Split Bregman
Deblurring is the inverse problem of restoring an image that has been blurred and possibly corrupted with noise. Deconvolution refers to the case where the blur to be removed is linear and shift-invariant so it may be expressed as a convolution of the image with a point spread function. Convolution corresponds in the Fourier domain to multiplication, and deconvolution is essentially Fourier div...
متن کاملImage Restoration with Compound Regularization Using a Bregman Iterative Algorithm
Some imaging inverse problems may require the solution to simultaneously exhibit properties that are not enforceable by a single regularizer. One way to attain this goal is to use a linear combinations of regularizers, thus encouraging the solution to simultaneously exhibit the characteristics enforced by each individual regularizer. In this paper, we address the optimization problem resulting ...
متن کامل